

L'EFFICACITE ENERGETIQUE DES ALTERNATIVES

Paul de LARMINAT – Consultant International

COLLOQUE AFCE - 25 SEPTEMBRE 2018

afce.asso.fr

SOMMAIRE

- Introduction
- Niveaux des « alternatives »:
 - Fluide
 - Machine
 - Système
 - Process
- Les mélanges
 - Positionnement / autres fluides
 - Types de mélange
 - Comportement dans les circuits
- Panorama des fluides
 - Rendement / puissance
 - Inflammabilité
 - Applications aux machines Illustrations pour chillers

 - Comportement dans les circuits
- Conclusions

FROID, CLIMATISATION, PAC: Un bouleversement radical des pratiques

Le cadre dans lequel s'inscrivent nos métiers connaît une révolution profonde et rapide:

- Interdiction des CFC/HCFC.
- Limitations sur les HFC (« F-gaz », Kigali…)
 - → Apparition de nouveaux fluides frigorigènes.
- Développement de nouvelles technologies (Vitesse variable, compresseurs HP, systèmes de contrôle)
- Impératifs d'économies d'énergie pour raisons économiques et réglementaires (Ecodesign etc).
- Développement des énergies renouvelables.
- Transition vers des fluides inflammables.
 - → Nécessité de développer des « alternatives » aux solutions existantes.

QUEL(S) SENS AUX « ALTERNATIVES »? 4 différents niveaux

- Fluides: Fluides de remplacement (« drop-in ») ou de propriétés « similaires ».
- Machines: différents fluides utilisables pour une même application (ex: chiller)
- Systèmes: différentes façons de satisfaire un besoin donné. Par exemple, pour climatisation de confort: D-X, chillers, réseaux de froid...
- Process: réduction des charges thermiques.

PROCESS Reduction des charges thermique

Premier niveau pour économies d'énergie: réduction des charges thermiques:

- Architecture des bâtiments. Isolation. Optimisation des expositions. Ref: EPBD (Energy Performance of Buildings Directive).
- Optimisation des processus industriels.
- Optimisation des systèmes de contrôle.
- Mesures de « bon sens » Ex: fermeture des vitrines réfrigérées en réfrigération commerciale.

Sans doute le niveau le plus important pour réaliser des économies d'énergie.

SYSTEMES

...pour satisfaire un besoin

Un « système » est constitué de l'ensemble des équipements permettant de satisfaire un besoin. Par exemple, en climatisation par chillers:

- Unités de traitement d'air
- Chillers
- Pompes
- Système de condensation

Mais alternatives possibles. Ex:

- Réseaux de froid (« district cooling »)
- Systèmes à détente directe (VRF)

SYSTEMES (2)

Les systèmes les plus couramment utilisés dans un passé récent étaient optimisés selon le contexte économique, technologique et réglementaire du moment.

Les (r)évolutions en cours conduisent à revisiter en permanence ces options.

Exemples de tendances en cours:

- Développement des réseaux de froid / de chaleur.
- Unités autonomes en réfrigération commerciale.
- En réfrigération industrielle, cascades avec CO₂ en basse température

Exemple d'autre tendance vraisemblable: utilisation croissante de chillers plutôt que VRF, permet charges de fluide réduites, et à l'extérieur (condenseurs à air) ou confinées en salle des machines (fluides inflammables).

FLUIDES ALTERNATIFS Un large éventail de solutions

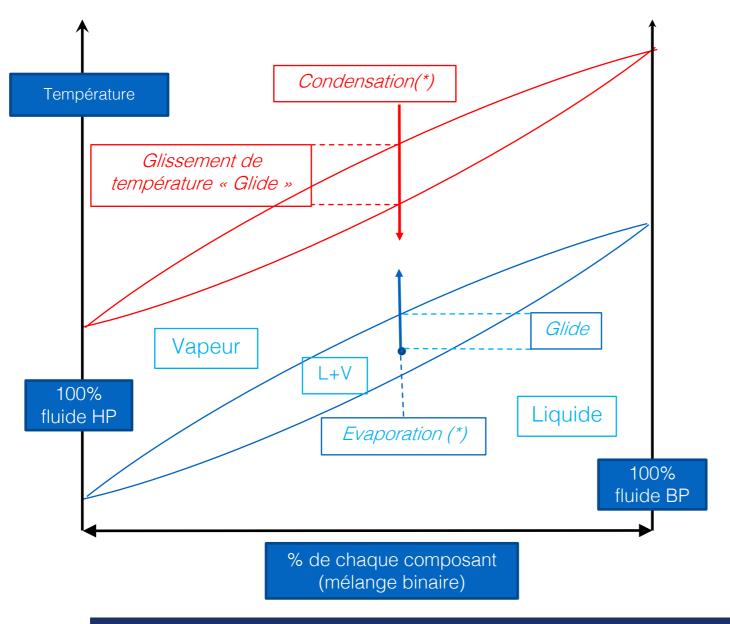
Pour répondre aux besoins d'abaissement du PRG des fluides, large éventail de solutions:

- HFC à PRG plus faible (Ex: R410A → R32).
- Fluides HFO à très faible PRG.
- Mélanges HFC / HFO.
- Fluides naturels: Ammoniac, CO2, Hydrocarbures.

Il n'y a pas une solution « passe-partout », mais une variété de choix possibles.

FLUIDES SYNTHETIQUES Place des mélanges

Le R22 était un fluide (presque) idéal: équilibre optimum entre Pression / Puissance frigorifique / Rendement. Ses alternatives HFC (R404A – R507 - R410A) :

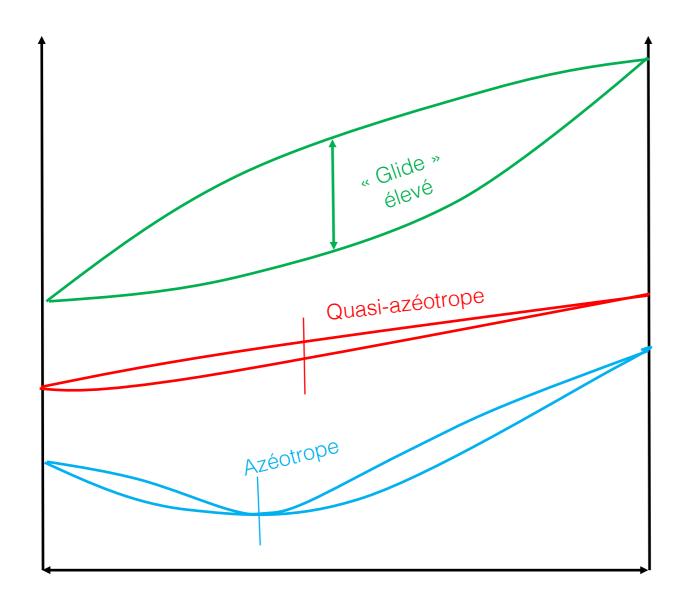

- sont des mélanges (quasi) azéotropiques mais ont un PRG fort (surtout R404A et R507).
- ...et des rendements énergétiques médiocres.

Les fluides « naturels » Ammoniac et R290 (propane) on des propriétés relativement proches du R22, mais sont inflammables et (ou) toxiques. Il n'existe pas aujourd'hui de fluide qui soit:

- avec pression / puissance similaires au R22.
- avec un PRG « acceptable ».
- ininflammable.
- fluide pur ou mélange azéotropique.

De nombreux mélanges HFC/HFO sont proposés avec divers compromis entre puissance frigorifique, PRG, inflammabilité, glissement de température.

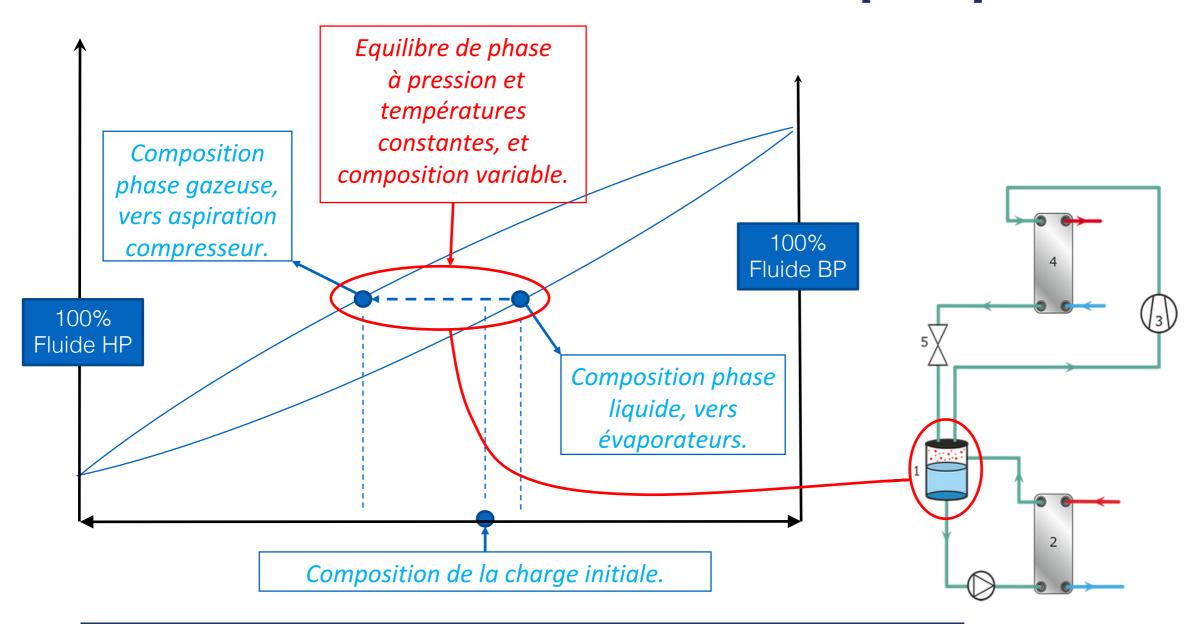
MELANGE NON-AZEOTROPIQUE Glissement de température (« Glide »)


Chaque courbe en fuseau est à pression constante, mais à deux niveaux de pression différents: pressions de condensation et d'évaporation.

(*) La Condensation et l'évaporation sont ici représentés à composition constante, comme pour un changement de phase à l'intérieur d'un tube. Ce n'est pas toujours le cas.

A composition constante, le changement de phase (évaporation ou condensation) se fait à température variable. D'où le glissement de température.

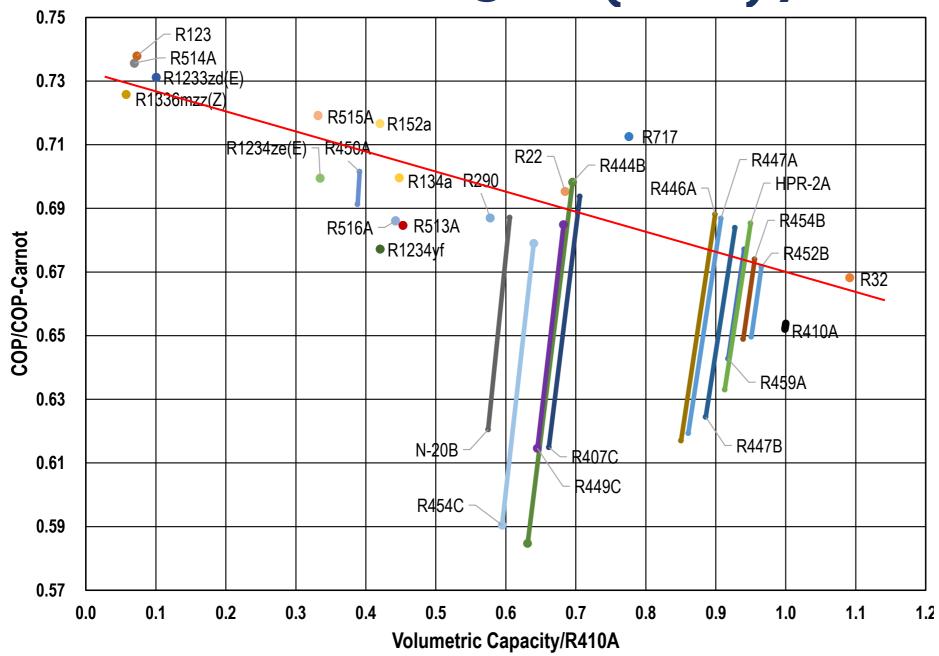
TYPES DE MELANGES


Les alternatives au R410A, R-22, 404A etc sont des mélanges de fluides à pression haute ou moyenne. Les fortes différences de température entre les composants à pression égales génèrent un glissement de température élevé.

Les alternatives aux R134a et R123 sont des mélanges de fluides aux propriétés relativement similaires. De tels mélanges ont un « glide » faible (quasi-azéotropes), ou donnent plus facilement des azéotropes.

Les fluides purs ou mélanges azéotropiques n'ont pas de "glide". Les mélanges quasi-azeotropiques ont un "glide" très faible (ex: R410A). Les mélanges zeotropiques, ou non-azeotropiques (ex: R407) ont un "glide" significatif (plusieurs °K).

EVAPORATEUR NOYE Avec bouteille accumulatrice et pompe

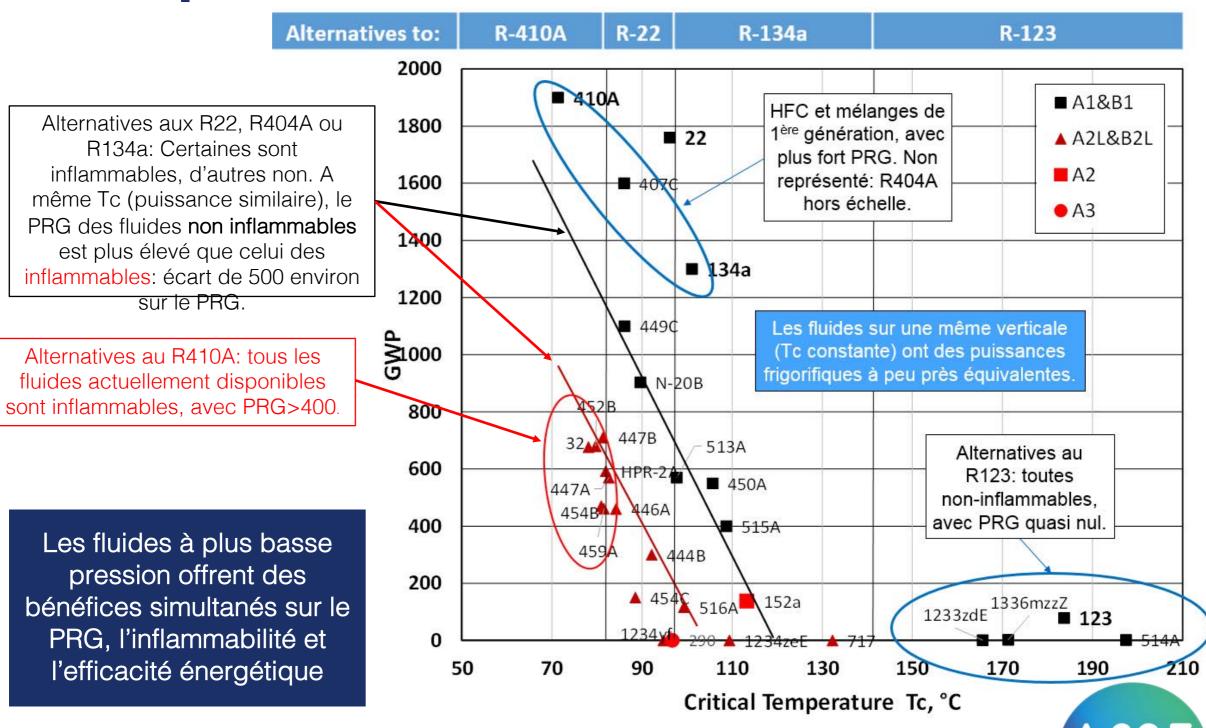


Les compositions du fluide sont différentes entre la charge initiale, le liquide vers les évaporateurs, et le gaz aspiré au compresseur.

→ Calculs très complexes + pénalité de performances !...

PAMORAMA DES FLUIDES (A/C) Rendement de cycle (COP) / Puissance

(1) Ligne rouge: tendance moyenne du COP. Pour les mélanges avec « glide », le point « idéal » est pris en compte. (note 3).


(2) Les fluides purs ou mélanges azéotropiques sont représentés par un point unique.

(3) Mélanges avec « glide »: les segments sont entre le point avec configuration idéale des échangeurs (contrecourant) et le cas défavorable (co-courant).

Les fluides à plus basse pression ont un meilleur rendement... mais puissance plus faible \rightarrow chers avec compresseurs volumetriques.

PRG DE DIFFERENTS FLUIDES (A/C) Selon puissance et inflammabilité

LES « MACHINES » Exemple d'alternatives pour chillers

R410A: toutes les alternatives actuellement disponibles sont inflammables.

Alternatives possibles: R-32 ou mélanges inflammables blends (Ex: 452B, 454B).

R22: pas de fluide de remplacement unique et idéal:

- Certains hydrocarbures sont proches, mais très inflammables.
- L'ammoniac aussi est assez proche, mais toxique, inflammable... et cher pour les chillers.
- Les mélanges "similaires" au R22 ont du "glide", pénalisant avec les échangeurs performants utilisés sur les chillers.
- → Pour les machines de puissance moyenne à forte (>500 kW), le marché a été pris par le R134a à plus basse pression.
- Maintenant évoluant vers des alternatives avec plus faible PRG ...ou fluides à pression encore plus basse comme le R1233zd (compresseurs centrifuges).

LES « MACHINES » Alternatives pour chillers - suite

R134a: alternatives disponibles avec des fluides de propriétés assez proches:

- HFO R1234ze ou mélange azéotropique R515A (PRG quasi nul, mais A2L)
- Mélanges R513A or R516A (A1, PRG 400 à 600)
- ...ou fluides à plus basse pression, tells que R1233zd.

R123: alternatives disponible, non inflamables, avec PRG quasi nul et propriétés assez proches :

- R1233zd (HCFO)
- R1336mzz (HFO)
- Mélanda azástropique DE14 (diaboráthylàna : LIEO)

Attention:

Les comparaisons théoriques donnent des tendances. Mais le résultat final depend de la mise en oeuvre.

Le "juge de paix" est dans les performances cetifiées de chaque machine.

CHANGEMENTS DE FLUIDES dans les machines

On entend ici par « machine » un assemblage de composants remplissant une fonction donnée; par exemple un chiller, un groupe de condensation etc.

Trois cas de figure possibles:

- Fluides de "retrofit": on peut remplacer le fluide à performances équivalentes. Ex: R134a -> R513A; R123 -> R514A
- Fluides "similares": on peut garder la même "plateforme" technique, mais en l'adaptant pour conserver la puissance. Ex: R134a → R1234ze.
- Fluides différents: on remplace une machine par un autre avec fluide et technologies différentes. Ex: chiller à vis au 134a -> chiller centrifuge au R1233zd.

CONCLUSIONS

- Les fluides « de nouvelle génération » n'ont pas de bénéfice systématique pour l'efficacité énergétique.
- ...mais en lien avec d'autres progrès techniques, certaines combinaisons sont très efficaces.
- Prudence avec les mélanges avec glissement de température: intéressants pour certaines applications, mais aussi être très pénalisants dans certains cas.
- L'utilisation de fluides à plus basse pression permet généralement des bénéfices simultanés sur le PRG, l'inflammabilité et l'efficacité énergétique... mais souvent au détriment des coûts.

Les « solutions alternatives » efficaces sont à chercher au niveau des systèmes complets, plus que sur les fluides frigorigènes seulement.

Merci pour votre attention

Paul de Larminat - Consultant

