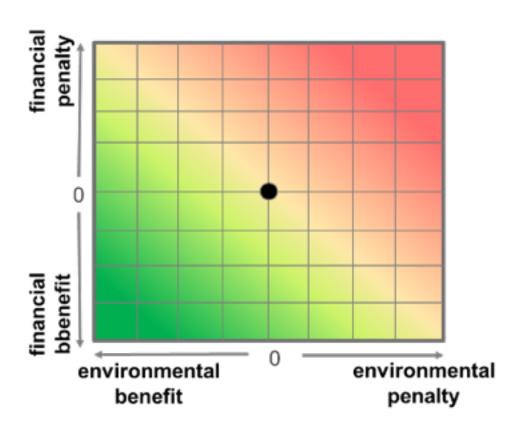


ÉNERGIE & EFFICACITÉ ÉNERGÉTIQUE

COLLOQUE AFCE - 7 OCTOBRE 2020

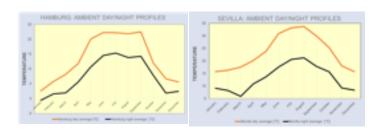


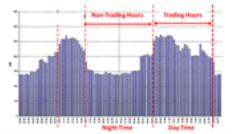
Le système de sélection d'équipement HVAC&R par rapport à l'efficacité énergétique

COLLOQUE AFCE - 7 OCTOBRE 2020

Eco-efficacité

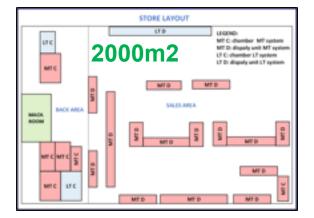
• Couvre à la fois l'impact environnemental (TEWI) et l'impact financier (CAPEX et OPEX)




		% of capture of impact		
	Metric type	Environmental	Financial	
GWP	1 dimension	up to 35%	0%	
TEWI	1 dimension	up to 95%	0%	K
LCCP	1 dimension	up to 100%	0%	K
Eco-Efficiency	2 dimensions	up to 95%	up to 100%	

Hypothèses (exemple)

- Deux climats : Hambourg froid / Séville chaud
- Températures moyennes mensuelles utilisées (2016)
- Charge nominale (heures d'ouverture) / Charge réduite (heures de fermeture)
- Consommation électrique prise en compte : compresseurs, ventilateurs des condenseurs, ventilateurs des refroidisseurs d'air, ventilateurs et lampes de vitrines, réchauffeurs de dégivrage



Variation quotidienne typique de la charge d'un supermarché

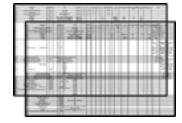
CONDITIONS DE FONCTIONNEMENT

- Durée de vie 15 ans
- Taux de fuite 15 % 5 % 1 % selon le système
- Température positive : -10C/SH10K/SC5K
- Basse température : -35C/SH10K/SC5K
- Températures moyennes utilisées pour l'évap et le condenseur
- Tcondenseur = Tambiante + 10K
- Tcond 20C minimum autorisé

BACKAREA BACKAR

CAPEX (couts d'investissemement)

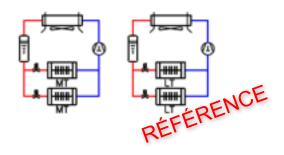
- Nomenclature développée pour chaque architecture.
- Devis de différents fabricants d'équipements
- Intelligence du marché
- Validation par une tierce partie



OPEX (couts d'utilisation)

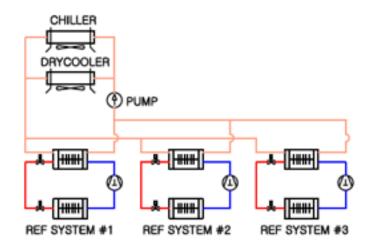
- Coût de l'électricité (0,094€/kWh)
- Entretien, deux fois par an (entretien de base, changement de filtre, huile, petites réparations.....)

acemafroid

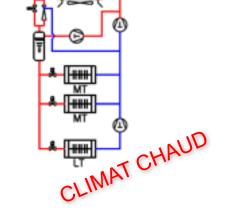

Recharge de réfrigérant

Architectures modélisées

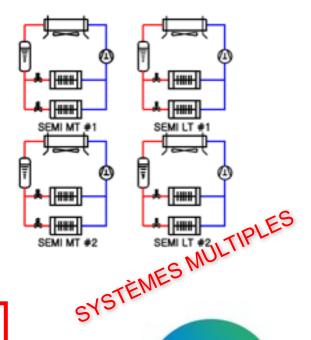
R404A en détente directe



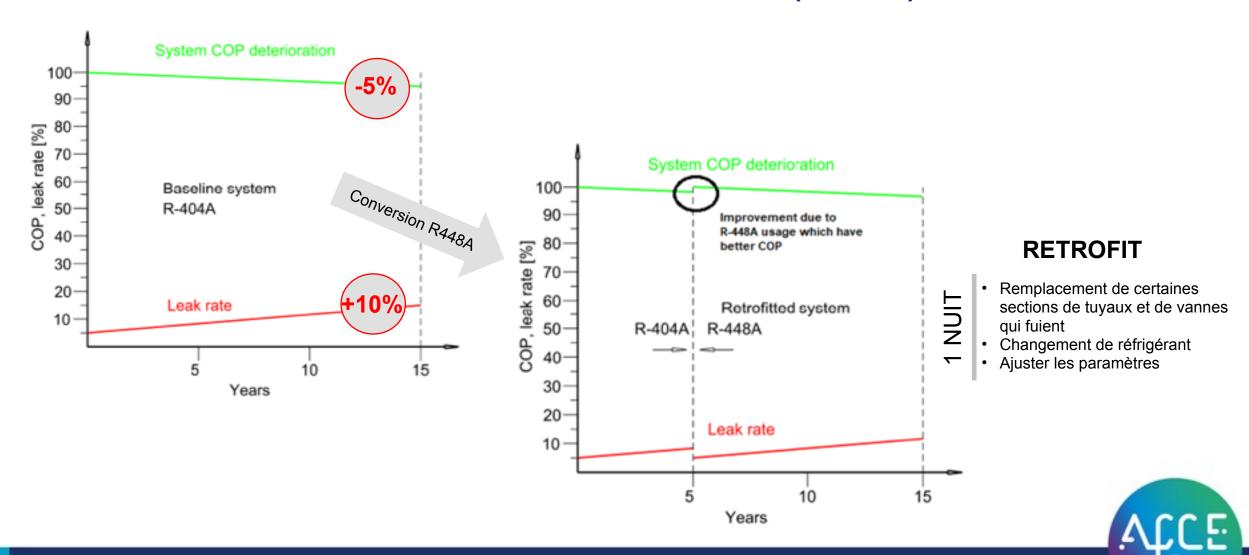
Booster CO2 basique


HIIII MT

CLIMAT FROID

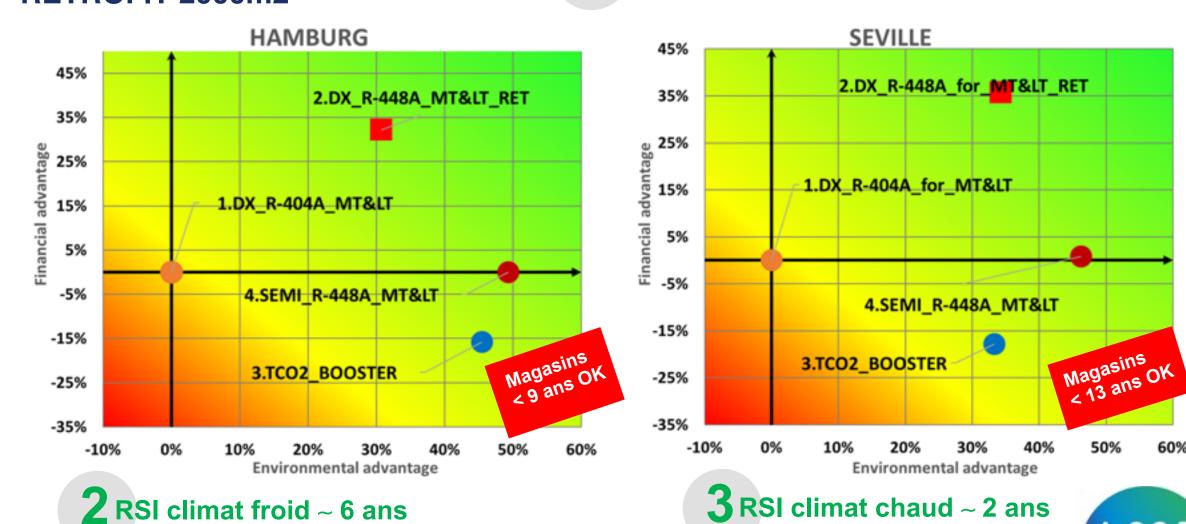

Boucle d'eau R455A /R1234ze/Glycol

Booster CO2 + multi-ejecteur + compression parallele

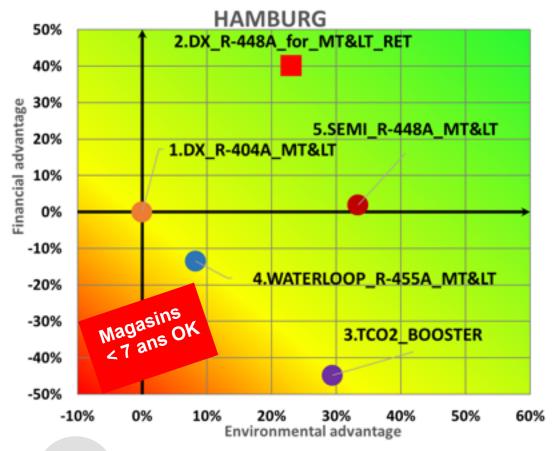


Semi-distribuée R448A

+ Conversion R404A vers R448A (N40)


Conversion R404A vers R448A (Retrofit)

RETROFIT 2000m2


1 Coût de la conversion ~ 6% coût système neuf

60%

RETROFIT 2000m2

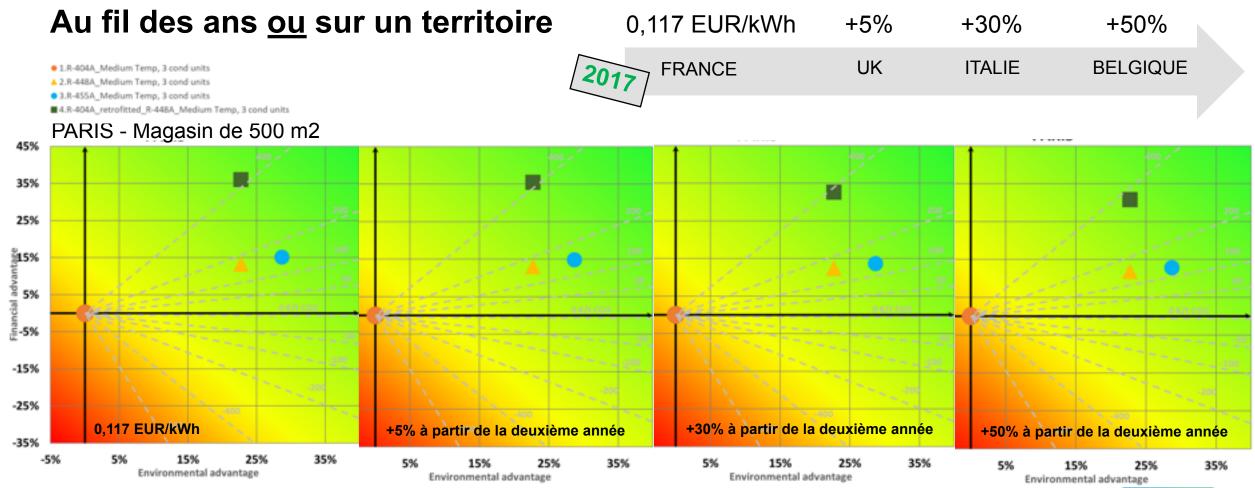
1 Coût de la conversion 3 à 4 % coût système neuf

SEVILLA 50% 2.DX R-448A for MT< RET 40% 30% Financial advantage 20% 1.DX_R-404A_MT&LF.SEMI_R-448A_MT< 10% 0% -10% -20% 4.WATERLOOP_R-455A_MT< Magasins < 12 ans OK -30% 3.TCO2 BOOSTER -40% -50% -10% 0% 10% 30% 40% 50% 60% Environmental advantage

2 RSI climat froid ~ 8 ans

3RSI climat chaud ~ 3 ans

Autre utilisation de ce modèle


En clarifiant les craintes liées aux choix d'architectures de froid, par exemple :

- Augmentation du tarif de l'électricité
- Taxe carbone
- Prix des fluides
- Fiabilité de la réfrigération (pas de crash)
- Dépendance technique (maintenance)
- Risque pour les employés et les clients

L'analyse de sensibilité permet d'évaluer l'impact de ces facteurs sur la robustesse d'un choix d'architecture de froid.

Tarif Electrique

- 1. Impact très limité du coût de l'électricité sur la hiérarchie des architectures HFC/HFO!
- 2. Le TCO2 serait l'architecture la plus impactée par le tarif électrique (plus de consommation)

Taxe Carbone

0 EUR/t de CO2

15%

Environmental advantage

5%

-5%

0E/t de CO2 en 2020 10E/t de CO2 20E/t de CO2 30E/t de CO2 en 2025 • 1.R-404A_Medium Temp, 3 cond units ▲ 2.R-448A_Medium Temp, 3 cond units 3.R-455A_Medium Temp, 3 cond units ■ 4.R-404A_retrofitted_R-448A_Medium Temp, 3 cond units PARIS - Magasin de 500 m2 35% 25% **15%** ∝ 5% .≅-5% -15% -25%

35%

20 EUR/t de CO2 dès la deuxième année

Environmental advantage

25%

35%

1. Impact positif de la taxe carbone en faveur de la suppression du R404A

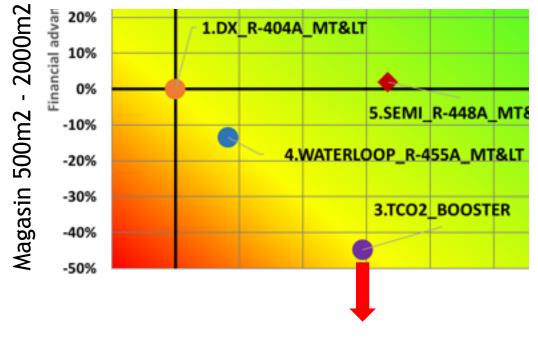
35%

2. Une taxe carbone élevée favorisera les constructions neuves avec du R455A

10 EUR/t de CO2 dès la deuxième année

Environmental advantage

35%


30 EUR/t de CO2 dès la deuxième année

25%

FIABILITE

L'arret d'un booster CO2 (1 jour) génère une perte d'exploitation de 10kE/jour pour un magasin de 500 à 800m2 et de 30kE/jour pour un magasin de 2000m2.

Nota: Pertes de denrées alimentaires non-incluses, meme si elles peuvent etre conséquentes (manque de données solides).

Chaque accident qui dure 1 jour pénalise la performance financiere totale du magasin (TCO) de ~ 4 a 5% selon qu'il est situé dans un environnement froid ou chaud

- 1. Le risque financier global dépendra du nombre d'accidents
- 2. Les magasins en zone chaude seront confrontés à des accidents plus longs (redémarrage à haute pression)

FIABILITE

Retour d'expérience été 2019 : canicule en France

http://www.frigoristes.fr/article.php?sid=391#.XfpK45V8BYd

- 1/ 100 retours terrain TCO2 en réfrigération commerciale : **75 % des installations ont nécessité une projection d'eau sur le refroidisseur de gaz**.
- 90 % des systèmes d'arrosage sont installés par le technicien frigoriste à l'aide de tuyaux et de pulvérisateurs provenant de magasins de bricolage!
- 2/ Une estimation approximative conduit à 120 000 m3 d'eau gaspillée en France alors que le pays était sous restriction d'eau... C'est une catastrophe écologique.
- 3/ Lorsque l'eau ne peut pas refroidir suffisamment, le système T-CO2 s'arrête : 52% des arrêts ont duré plus d'une heure car il est très difficile de redémarrer une installation au CO2 par haute température ambiante.
- Un jour sans vente coûte 5% en TCO. Bien qu'il n'y ait pas de chiffres fiables, cela a aussi entraîné une perte de nourriture dans 62% des cas...
- 4/ Dans cette situation, personne ne se soucie du COP, mais cet épisode a été associé à une consommation d'électricité élevée liée à des coefficients de performance désastreux, à davantage de fuites de CO2 et à des défaillances de compresseurs....
- 5/ Cela s'est produit pendant la période des vacances d'été avec des techniciens qualifiés moins disponibles que d'habitude.

CONCLUSIONS sur l'ECO-EFFICACITE

- Outil de comparaison objective entre les architectures de froid validé par le Cemafroid.
- Des écarts de cout total de plus de 90% peuvent exister pour le meme service de froid!
- L'étude de sensibilité des parametres permet de vérifier la robustesse d'un choix technique dans un contexte flunctuant.
- L' efficacité énergétique et la fiabilité du service de froid sont les 2 parametres les plus impactants sur le cout total de possession.

Merci pour votre attention!

